Animal-Vehicle Collision Mitigation in Texas, USA

Maria Burton, Jorge Prozzi and Prasad Buddhavarapu
A familiar experience...

(Source: http://www.youtube.com/watch?v=zYxbqQoyPXw)
Introduction

In the United States:

• **2001 estimate**: 1.5 million deer-vehicle collisions
 - >29,000 human injuries
 - >200 human fatalities
 - 1.3 million deer fatalities
 - >$1 billion-worth property damage

• **2009 estimate**: 2.4 million deer-vehicle collisions
Introduction

• Deaths due to animal-vehicle collisions increasing:
 – 1994: 131 people died
 – 2008: 210 people died

• Top 5 states with most deaths in animal vehicle collisions (2004-2008):
 1. Texas, 88 deaths
 2. Wisconsin, 62 deaths
 3. Ohio, 51 deaths
 4 & 5. Pennsylvania and Michigan, 46 deaths each
Introduction

• SH-130 in Texas:
 – Opened October 2012
 – The fastest toll road in the U.S., 85mph (140 km/h)
 – south of Austin
 – feral hog collisions on this new highway

– SUV after hitting hogs (March 2013)
Introduction

• To effectively manage animal-vehicle collisions:
 • Knowledge on spatial distribution
 • Knowledge on severity of collisions

• Statistical models can identify
 • High-risk accident roads
 • Features associated with severe crashes
This study

- **Objective of this study:**
 - Develop *logistic regression models* to predict the severity of animal-vehicle collisions in Texas based on:
 - Month and time of day
 - Outdoor light condition
 - Rural vs. urban setting
 - Domestic vs. wild animal
 - Vehicle type & traffic
 - Road width, road type
 - Driver age

- Data was obtained from **Crash Records Information System (CRIS)** of Texas.
Crashes during 2007-09

Animal-related crashes in Texas 2009

- 12,123 total
- 32 deaths
- 335 serious injuries
- 1,382 moderate injuries
- 1,741 minor injuries
- 8,633 property damage only
Data: 2007-2009 average/yr. (Vehicle Type)

Overall:
- 4252 4-D sedans
- 3462 pickups
- 2138 SUV's
- 343 motorcycles

- **Severe injury or death:** motorcycle most
- **Mod/minor injury or prop.damage:** 4-D sedans most
Data: 2007-2009 average/yr. (Month)

Overall:
October: 1433 crashes
November: 1739 crashes
December: 1196 crashes

- Most
 October & November (all severity levels)

- Least (varied per severity level)
 July (prop.damage only)
 January (severe injury or death)
Data: 2007-2009 *average/yr.*
(Hour)

• **Moderate or minor injury or property damage only:**
 9pm most

• **Severe injury or death:**
 8pm, 12am, 4am, & 6am most

Graph Details
- **X-axis:** Hour of the day
- **Y-axis:** # of Crashes
- **Legend:**
 - Severe Injury or Death
 - Moderate or Minor Injury
 - Property Damage Only

The graph illustrates the distribution of crashes by hour, with peaks at 9pm for moderate or minor injuries and property damage only, and 8pm, 12am, 4am, & 6am for severe injuries or death.
Data: 2007-2009

Outdoor light condition:
(overall)
• 7108 crashes – dark, not lighted
• 3115 crashes - daylight

Animal Type:
(overall)
• 7007 crashes – wild
 - white-tailed deer
 - feral hogs
• 4136 crashes – domestic
 - free range livestock
 - pets

(Elgin, TX, September 2013)
(Austin, TX, October 2013)
Logistic Regression Model

\[P(y_i \mid x_i') = \frac{1}{1 + e^{-x_i'\beta}} \quad 0 \leq P(x_i) \leq 1 \]

Where,

\[x_i' \beta = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} \]

- The linear predictor

- \(\beta \) parameters need to be estimated.
 - Maximum Likelihood technique
 - Use a statistical computer package: SAS
Developed Models

• **Model 1:** \(P(\text{serious injury or death} \mid x) \)

• **Model 2:** \(P(\text{moderate or minor injury} \mid x) \)

• **Model 3:** \(P(\text{property damage only} \mid x) \)
Results

Logistic Regression Model for the Probability of *Property Damage Only*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter Estimate</th>
<th>St. Dev.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.37</td>
<td>0.038</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Indicator: Motorcycle</td>
<td>-4.04</td>
<td>0.17</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Indicator: Sedan4D</td>
<td>-0.115</td>
<td>0.042</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Indicator: SUV</td>
<td>-0.241</td>
<td>0.051</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Indicator: October</td>
<td>0.205</td>
<td>0.059</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Indicator: November</td>
<td>0.421</td>
<td>0.058</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Indicator: December</td>
<td>0.199</td>
<td>0.065</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Indicator: 12am</td>
<td>-0.390</td>
<td>0.080</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Indicator: 1am</td>
<td>-0.213</td>
<td>0.089</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Indicator: 2am</td>
<td>-0.431</td>
<td>0.091</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Indicator: Wild</td>
<td>0.374</td>
<td>0.039</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Indicator: Daylight</td>
<td>-0.249</td>
<td>0.046</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>
Conclusion

• **Need to identify high-risk areas** for mitigation
• The models can help understand scenarios that are potentially dangerous
 – Identify the vulnerable time and location
 – Prioritize locations
 – Identify appropriate mitigation technologies
 – Perform cost-benefit analysis
 – Recommend investment options
Thank You!