

SKID RESISTANCE PERFORMANCE OF MELTER SLAG-BASED SURFACE DRESSINGS ON HAWKES BAY RURAL STATE HIGHWAYS

Written by Shaun Perrin and David Cook
Presented by
John Donbavand

New Zealand

Hawkes Bay

Rural State
highways in
Hawkes Bay
present tight
curvilinear
alignments, high
percentage of
heavy commercial
traffic and local
aggregates with
relatively low skid
resistance

SH 5: 69 km AADT: 3000 HCV: 23%

Max Alt: 600m

Regional Strategic

Search for Good Aggregate

- Lack of local aggregates to provide the required skid resistance
- A number of aggregates from different regions were evaluated
- One of these aggregates was Melter Slag
- Melter slag was slightly more difficult to use than the natural aggregates but appeared to be providing good initial performance

Melter Slag Production Process

Chemistry of Melter Slag

The major mineral constituents of the melter slag can be divided into three types:

- complex titanium oxides, which have a needle-like form
- spinels and similar metal oxide, which have a rather equi-dimensional shape
- calcium bearing oxides and silicates

The titanium oxides in particular provide strength and a high degree of microtexture

Melter Slag - Vesicular

Melter Slag and PSV

The PSV is between 57 and 60. However GMS is very resistant to long term polishing

Figure 7(b) Fine grained greywacke sandstone G2: polished surface x 200mag

overnment

Performance of GMS

Ideal comparison

- GMS was placed on SH5 in the same location to replace high PSV natural aggregate
- Five sites with different stress conditions were considered
- Data provided 10 plots of comparison between natural aggregate and GMS

Sites Used in the Study

Comparison GMS Versus Natural Aggregate

Melter Slag Reseal Site Number	Natural Aggregate Years of data	Melter Slag Years of data
1	2 (2008 - 2009)	5 (2010 - 2014)
2	4 (2003 - 2006)	4 (2011 - 2014)
3	6 (2002 - 2007)	7 (2008 - 2014)
4	9 (1998 - 2006)	8 (2007 - 2014)
5	2 (2005 - 2006)	8 (2007 - 2014)

Decrease in Skid Resistance (Straight Roads)

SH5 RP 233/5.03-5.24 Straight

Decrease in Skid Resistance (Curves)

SH5 RP 233/5.25-5.54 Curve

Plot of all Data

Plot of all data on straights

Plot of all data on Curves

The Disadvantages of Using GMS

- GMS require up to 25% more binder than natural aggregate
- GMS denser so more expensive cartage
- GNS can react with road markings so the first application may need to be replaced quickly

Concluding Remarks

- GMS generally shows a steady decrease in skid resistance over time while the natural aggregate data is less consistent.
- Clear indication that reduction in skid resistance with age is greater on corners than on straights
- GMS shows improved skid resistance performance over natural aggregate particularly on curves.

