

Splash and spray assessment tool

Alan Dunford 20th May 2014

Background

- Splash and spray contribute to a small but measureable number of accidents
- Nuisance to motorists
- Contamination and pollutants

- Road geometry and surface characteristics contribute to splash and spray
- Tool to assist design, or indicate mitigation strategies

Project client and partners

Stages of development

Stages of development

Water depth model

- Literature search found a number of equations predicting water depth
- Similar general form:

```
d = k T^w L^x I^y S^z
```

Where

T = texture depth

L = drainage length

I = rainfall rate

S = slope

 Values of k, w, x, y, z to be determined through experimentation on relevant range of surfaces

Water depth - Flume experiment

- Determine k, W, X, Y, Z by experimentation
- Slabs of various surface types
- Various 'rainfall' rates
- Various slopes

Water depth - Flume experiment

Surface type	Texture (MPD)
SMA	0.55
Asphalt concrete	0.63
Smooth concrete	0.21
Tined concrete	1.01
OGFC	1.64
Perspex	0.001

Water depth - Flume experiment

Multiple linear regression of the data

$$d = 5.9*10^{-4} T^{0.087} (LI)^{0.59} S^{-0.33}$$

Splash Spray model - CFD

- CFD model consists of a dump truck and sedan car within a rectangular tube
- A turbulent air stream passes through this
- Overall velocity of the air stream chosen to represent the desired truck velocity

Splash Spray model – release of water droplets

- Weir model
 - Capillary adhesion
 - Tread pickup
 - Bow wave
 - Side wave

Diagram reproduced from Weir (1978)

Splash Spray model – release of water droplets

Splash Spray model – release of water droplets

Splash Spray model – CFD for individual mechanisms

Splash Spray model – speed

Splash Spray model – characterisation

$$\begin{split} SD_{CA} &= (-2.69 \cdot 10^{-5} \cdot V' + 2.43 \cdot 10^{-3}) MR_{CA} \\ SD_{TP} &= (1.16 \cdot 10^{-5} \cdot V' - 5.25 \cdot 10^{-5}) MR_{TP} \\ SD_{BW} &= (2.67 \cdot 10^{-5} \cdot V' - 4.71 \cdot 10^{-4}) MR_{BW} \\ SD_{SW} &= (1.65 \cdot 10^{-5} \cdot V' - 3.99 \cdot 10^{-4}) MR_{SW} \end{split}$$

$$SD_W = SD_{CA} + SD_{TP} + SD_{BW} + SD_{SW}$$

Exposure model – meteorological data

Exposure model – user nuisance

- User perception study
- Videos:
 - Passing
 - Following
 - Dump truck
 - Tractor / trailer
 - Sedan / SUV
- Occlusion factor from chequerboard

Model development - final

Model development - example

Crossfall + Gradient + Texture + Rainfall = ...

Model development - example

Spray Density

- Identify 'hot spots' for mitigation measures
 - Different surfacing
 - Realignment

Thank you

Splash and spray assessment tool

Alan Dunford 20th May 2014 adunford@trl.co.uk

