## Animal-Vehicle Collision Mitigation in Texas, USA

Maria Burton, Jorge Prozzi and Prasad Buddhavarapu



## A familiar experience...



(Source: <a href="http://www.youtube.com/watch?v=zYxbqQoyPXw">http://www.youtube.com/watch?v=zYxbqQoyPXw</a>)

### In the United States:

- <u>2001 estimate</u>: 1.5 million deer-vehicle collisions
  - >29,000 human injuries
  - >200 human fatalities
  - 1.3 million deer fatalities
  - >\$1 billion-worth property damage



• <u>2009 estimate</u>: 2.4 million deer-vehicle collisions

- Deaths due to animal-vehicle collisions increasing:
  - 1994: 131 people died
  - 2008: 210 people died



- Top 5 states with <u>most deaths</u> in animal vehicle collisions (2004-2008):
  - 1. Texas, 88 deaths
  - 2. Wisconsin, 62 deaths
  - 3. Ohio, 51 deaths
  - 4 & 5. Pennsylvania and Michigan, 46 deaths each

- SH-130 in Texas:
- Opened October 2012
- The fastest toll road in the U.S., 85mph (140 km/h)
- south of Austin
- feral hog collisions on this new highway





- SUV after hitting hogs (March 2013)



- To effectively manage animal-vehicle collisions:
  - •Knowledge on spatial distribution
  - •Knowledge on severity of collisions
- Statistical models can identify
  - •High-risk accident roads
  - •Features associated with severe crashes

# This study

- Objective of this study:
  - Develop logistic regression models to predict the severity of animal-vehicle collisions in Texas based on:
    - Month and time of day
    - Outdoor light condition
    - Rural vs. urban setting
    - Domestic vs. wild animal
    - Vehicle type & traffic
    - Road width, road type
    - Driver age



 Data was obtained from Crash Records Information System (CRIS) of Texas.

## Crashes during 2007-09





## Data: 2007-2009 average/yr. (Vehicle Type)



## Data: 2007-2009 average/yr. (Month)



**Overall:** October: 1433 crashes November: 1739 crashes December: 1196 crashes

•<u>Most</u> October & November (all severity levels)

<u>Least (varied per severity level)</u>
 July (prop.damage only)
 January (severe injury or death)

### Data: 2007-2009 average/yr. (Hour)



Hour

## Data: 2007-2009

### **Outdoor light condition:**

(overall)

- 7108 crashes dark, not lighted
- 3115 crashes daylight

### Animal Type:

(overall)

- 7007 crashes wild
  - white-tailed deer
    -feral hogs
- 4136 crashes domestic
  - free range livestock
  - pets



(Elgin, TX, September 2013)



(Austin, TX, October 2013)

## **Logistic Regression Model**

$$P(y_i \mid x_i') = \frac{1}{1 + e^{-x_i'\beta}}$$

 $0 \le P(x_i) \le 1$ 



- $\beta$  parameters need to be estimated.
  - Maximum Likelihood technique
  - Use a statistical computer package: SAS

## **Developed Models**

- Model 1: P( serious injury or death | x)
- Model 2: P(moderate or minor injury | x)
- Model 3: P(property damage only | x)

## Results

#### Logistic Regression Model for the Probability of *Property Damage Only*

| Variable              | Parameter Estimate | St. Dev. | P-value |
|-----------------------|--------------------|----------|---------|
| Constant              | 1.37               | 0.038    | < 0.01  |
| Indicator: Motorcycle | -4.04              | 0.17     | < 0.01  |
| Indicator: Sedan4D    | -0.115             | 0.042    | < 0.01  |
| Indicator: SUV        | -0.241             | 0.051    | < 0.01  |
| Indicator: October    | 0.205              | 0.059    | < 0.01  |
| Indicator: November   | 0.421              | 0.058    | < 0.01  |
| Indicator: December   | 0.199              | 0.065    | < 0.01  |
| Indicator: 12am       | -0.390             | 0.080    | < 0.01  |
| Indicator: 1am        | -0.213             | 0.089    | < 0.01  |
| Indicator: 2am        | -0.431             | 0.091    | < 0.01  |
| Indicator: Wild       | 0.374              | 0.039    | < 0.01  |
| Indicator: Daylight   | -0.249             | 0.046    | < 0.01  |
|                       |                    |          |         |

## Conclusion

- Need to identify high-risk areas for mitigation
- The models can help understand scenarios that are potentially dangerous
  - Identify the vulnerable time and location
  - Prioritize locations
  - Identify appropriate mitigation technologies
  - Perform cost-benefit analysis
  - Recommend investment options



## Thank You!