An index for safety management of road networks

Prasad Buddhavarapu and Jorge A Prozzi

SaferRoads2014, Cheltenham, UK May 20, 2014

- Introduction
 - Evolution of the safety management in USA
 - Current issues

- Introduction
 - Evolution of the safety management in USA
 - Current issues
- Proposed methodology
 - Model Specification
 - Efficient Bayesian estimation

- Introduction
 - Evolution of the safety management in USA
 - Current issues
- Proposed methodology
 - Model Specification
 - Efficient Bayesian estimation
- Implementation example
 - Data description
 - Model results
 - Potential application

- Introduction
 - Evolution of the safety management in USA
 - Current issues
- Proposed methodology
 - Model Specification
 - Efficient Bayesian estimation
- Implementation example
 - Data description
 - Model results
 - Potential application
- Conclusions & Future work

Safety Statistics

National Highway Traffic Safety Administration (NHTSA): occupant fatality rates declined by **22.7%** from 1975 to 1992 which further decreased by **30.3%** by 2010

Introduction Safety Statistics

National Highway Traffic Safety Administration (NHTSA): occupant fatality rates declined by **22.7%** from 1975 to 1992 which further decreased by **30.3%** by 2010

About **35,000** fatalities and **1.7 million** injuries are annually reported in highway crashes (2005-10) across USA.

Introduction Safety Statistics

National Highway Traffic Safety Administration (NHTSA): occupant fatality rates declined by **22.7%** from 1975 to 1992 which further decreased by **30.3%** by 2010

About **35,000** fatalities and **1.7 million** injuries are annually reported in highway crashes (2005-10) across USA.

Cost of traffic crashes is reportedly more than **two and one-half times** the cost of congestion in urban areas.

Evolution of the road safety management in USA

Data-driven or evidence-based.

Evolution of the road safety management in USA

Data-driven or evidence-based.

1966: Highway Safety Act

Required uniform safety standards across the country.

Evolution of the road safety management in USA

Data-driven or evidence-based.

1966: Highway Safety Act

— Required uniform safety standards across the country.

1978: Surface Transportation Assistance Act

— Initiated Railway-Highway Grade Crossing and Hazard Elimination Programs.

Evolution of the road safety management in USA

Data-driven or evidence-based.

1966: Highway Safety Act

Required uniform safety standards across the country.

1978: Surface Transportation Assistance Act

— Initiated Railway-Highway Grade Crossing and Hazard Elimination Programs.

1991: Intermodal Surface Transportation Efficiency Act

— Individual states required to develop a Safety Management Systems

Evolution of the road safety management in USA

2005: Safe, Accountable, Flexible, Efficient Transportation Equity Act

— Establishment of Highway Safety Improvement Program (HSIP).

Evolution of the road safety management in USA

2005: Safe, Accountable, Flexible, Efficient Transportation Equity Act

— Establishment of Highway Safety Improvement Program (HSIP).

2012: Moving Ahead for Progress (MAP-21) Act

— Dramatically increased the size of HSIP program with an average annual funding of \$ 2.4 billion.

Evolution of the road safety management in USA

- **2005:** Safe, Accountable, Flexible, Efficient Transportation Equity Act
- Establishment of Highway Safety Improvement Program (HSIP).
- 2012: Moving Ahead for Progress (MAP-21) Act
- Dramatically increased the size of HSIP program with an average annual funding of \$ 2.4 billion.
- **HSIP's data-driven strategic approach** to improve highway safety emphasizes
 - Need for comprehensive database management systems
 - state-of-the-art data analysis methodologies

Main objective

Bayesian methods effectively update prior safety knowledge with recent crash data.

Main objective

Bayesian methods effectively update prior safety knowledge with recent crash data.

Earlier safety literature addressed complex statistical concerns using Bayesian hierarchical frameworks.

Main objective

Bayesian methods effectively update prior safety knowledge with recent crash data.

Earlier safety literature addressed complex statistical concerns using Bayesian hierarchical frameworks.

Problem: Larger computational times, convergence issues & ad hoc algorithmic tuning.

Main objective

Bayesian methods effectively update prior safety knowledge with recent crash data.

Earlier safety literature addressed complex statistical concerns using Bayesian hierarchical frameworks.

Problem: Larger computational times, convergence issues & *ad hoc* algorithmic tuning.

Goal: To propose

- Computationally efficient Bayesian estimation algorithm
- Safety index for road networks

Model Specification

$$y_i \sim NB(r, p_i), i \in \{1, 2, ...n\}$$

Model Specification

$$y_i \sim NB(r, p_i), i \in \{1, 2, ...n\}$$

$$p_i = \frac{1}{1 + e^{-\psi_i}}; \psi_i = x_i^T \beta_i + \phi_i$$

Model Specification

$$y_i \sim NB(r, p_i), i \in \{1, 2, ...n\}$$
 $p_i = \frac{1}{1 + e^{-\psi_i}}; \psi_i = x_i^T \beta_i + \phi_i$
 $\beta_i \sim N(\beta, V_\beta)$

$$y_i \sim \textit{NB}(r, p_i), i \in \{1, 2, ...n\}$$
 $p_i = \frac{1}{1 + e^{-\psi_i}}; \psi_i = x_i^T \beta_i + \phi_i$
 $\beta_i \sim \textit{N}(\beta, V_\beta)$

Intrinsic CAR prior:
$$\phi_i | \phi_{-i} \sim N\left(\sum_j \frac{w_{ij}}{w_{i+}} \phi_j, \frac{\tau_c^2}{w_{i+}}\right)$$

Sampling model:

$$y_i \sim NB(r, p_i), i \in \{1, 2, ...n\}$$

$$p_i = \frac{1}{1 + e^{-\psi_i}}; \psi_i = x_i^T \beta_i + \phi_i$$

$$\beta_i \sim N(\beta, V_\beta)$$

Intrinsic CAR prior:
$$\phi_i | \phi_{-i} \sim N \left(\sum_j \frac{w_{ij}}{w_{i+}} \phi_j, \frac{\tau_c^2}{w_{i+}} \right)$$

Priors & Hyper priors:

$$r \sim \textit{Ga}(r_0, h)$$
; $h \sim \textit{Ga}(a_0, b_0)$

Model Specification

Sampling model:

$$y_i \sim NB(r, p_i), i \in \{1, 2, ...n\}$$

$$p_i = \frac{1}{1 + e^{-\psi_i}}; \psi_i = x_i^T \beta_i + \phi_i$$

$$\beta_i \sim N(\beta, V_\beta)$$

Intrinsic CAR prior:
$$\phi_i | \phi_{-i} \sim N \left(\sum_j \frac{w_{ij}}{w_{i+}} \phi_j, \frac{\tau_c^2}{w_{i+}} \right)$$

Priors & Hyper priors:

$$r \sim Ga(r_0, h)$$
; $h \sim Ga(a_0, b_0)$

$$\beta \sim N(b_0, B_0)$$
; $V_{\beta} \sim Wishart(\nu, V_0)$; $1/\tau_c \sim Ga(c_0, d_0)$

Efficient Bayesian Estimation

Data augmentation allows for constructing analytical conditional posteriors.

Efficient Bayesian Estimation

Data augmentation allows for constructing analytical conditional posteriors.

Gibbs sampling algorithm: Iterate t from 1:M

- $P(L^{(t)}|r^{(t-1)},....)$ Poisson distribution.
- $P(r^{(t)}|L^{(t)},....)$ Gamma distribution
- $P(\omega_i^{(t)}|\beta_i^{(t-1)},....)$ Polya-Gamma distribution
- $P(\beta_i^{(t)}|\omega^{(t)},....)$ Normal distribution
- $P(\beta^{(t)}|\beta_i^{(t)},....)$ Normal distribution
- $P(V_{\beta}^{(t)}|\beta_i^{(t)},....)$ Wishart distribution
- $p(\phi_i^{(t)}|\phi_{-i}^{(t-1)},....)$ Normal Distribution
-

Efficient Bayesian Estimation

Data augmentation allows for constructing analytical conditional posteriors.

Gibbs sampling algorithm: Iterate t from 1:M

- $P(L^{(t)}|r^{(t-1)},....)$ Poisson distribution.
- $P(r^{(t)}|L^{(t)},....)$ Gamma distribution
- $P(\omega_i^{(t)}|\beta_i^{(t-1)},....)$ Polya-Gamma distribution
- $P(\beta_i^{(t)}|\omega^{(t)},....)$ Normal distribution
- $P(\beta^{(t)}|\beta_i^{(t)},....)$ Normal distribution
- $P(V_{\beta}^{(t)}|\beta_i^{(t)},....)$ Wishart distribution
- $p(\phi_i^{(t)}|\phi_{-i}^{(t-1)},....)$ Normal Distribution
-

NOTE: $L \& \omega$ are augmented variables.

Efficient Bayesian Estimation

Simulation study setup:

Efficient Bayesian Estimation

Simulation study setup:

- Simulated 2000 crash sites
- Neighborhood based spatial correlation
- Intel i7 1.73Hz processor & 8GB memory

Efficient Bayesian Estimation

Simulation study setup:

- Simulated 2000 crash sites
- Neighborhood based spatial correlation
- Intel i7 1.73Hz processor & 8GB memory

Simulation results:

Efficient Bayesian Estimation

Simulation study setup:

- Simulated 2000 crash sites
- Neighborhood based spatial correlation
- Intel i7 1.73Hz processor & 8GB memory

Simulation results:

- Stationarity attainment in less than 5 minutes, which is significantly faster than existing Metropolis-Hastings based algorithms.
- Parameter estimation accuracy is more than 85%.

Empirical example

Data description

Crash data 10 different routes within Harris county, Texas. Also, included the exposure (traffic) levels in the model.

Empirical example

Potential Application

Posterior means of the proposed safety index or $E(y_i|X_i)$:

Conclusions

Findings

- Framework for extracting useful information from the crash databases and to annually update the crash estimates by accumulating on the prior knowledge.
- Proposed data augmentation scheme enhances the accessibility of the sophisticated Bayesian statistical methods
- Empirical findings:
 Roads with smoother ride, higher skid resistance and minor surface distresses are generally associated with the lower crash frequencies.

Conclusions Future Work

- Incorporating the probability of ensuring a particular threshold for safety index into the project prioritization applications.
- Current model can be extended to incorporate temporal correlation of the crash counts and correlation across crash severity categories.
- The proposed safety index can be formulated as a economically weighted combination of predicted crash counts of multiple severity levels on a given road segment at any given time.

Thank You

Questions?

Contact Information:

Prasad Buddhavarapu

 ${\sf Email:} \textbf{prasad.buddhavarapu@utexas.edu}$

Phone:+1 512 903 3939

