R&D FOR FUTURE ROAD IN KOREA

12 MAY 2008

KYONG-SOO YOO

KOREA ROAD & TRANSPORTATION RESEARCH INSTITUTE

ksyoo33@gmail.com

Project 1:

THE TEST ROAD OF KOREA

Project 2:

DEVELOPMENT OF MATERIALS AND
DESIGN-CONSTRUCTION TECHNOLOGIES FOR
THE SUSTAINABLE AND MULTI-FUNCTIONAL PAVEMENT

Project 3:

SMART HIGHWAY PROJECT

Contents

- ✓ INTRODUCTION
- ✓ TEST SECTIONS
- **✓ INSTRUMENT AND EQUIPMENT**
- ✓ MEASURING SYSTEM
- **✓ PLAN OF RESEARCH**

INTRODUCTION

- Objectives
- Outline
- Overall View

Objectives

To Develop Korean Pavement Design Guide

To Improve Pavement Performance & Increase Service Life of Pavement

To Reduce Construction and Maintenance Costs

Outline

- 7.7km Long Two-Lane Expressway
- Construction Period : Jan. 1998 ~ Dec. 2002
- Construction Cost: US\$19,000,000
- Research Expenses: US\$3,750,000

Overall View

TEST SECTIONS

- Variables
- PCCP Sections
- ACP Sections

Variables

PCCP Sections

ACP Sections

INSTRUMENT AND EQUIPMENT

- Sensors
- Weigh-in-motion(WIM)
- Weather Station

Sensors

- 1897 Sensors of 11 Kinds to Measure
 - Pavement Behavior
 - Traffic and Environmental Loads

ТҮРЕ	Strain Gauge				Soil		Curling	Joint	Thermistor or	Frost Depth	
	PCC	Steel	AC	Mold	Pressure Gauge	MDD	Displ. Gauge	Displ. Gauge	Thermo -couple	Thermistor	Water Content Gauge
PCCP	636	48	36	132	34	4	51	120	140	30	30
ACP	<u>-</u> /	-	374	-	66	6		\-\	112	39	39

Weigh-in-motion(WIM)

- Accumulative Vehicle Weight, Speed, Wandering
- Applicable up to 200km/hr
- High Accuracy (Error Rate < 3%)</p>

Weather Station

- Weather Conditions in Test Road
- Ambient Temperature
- Solar Radiation
- Wind Speed and Direction
- Rainfall

MEASURING SYSTEM

- > Type of Measurement
- > Type of Data
- Data Acquisition

Type of Measurement

- Automatic(Continuous) Measurement
 - Pavement Response to Climate Condition
 - Temperature, Water Content
 - Weather Data
 - Accumulative Axle Load from WIM System
- Manual(Seasonal) Measurement
 - Pavement Response to Traffic Load
 - Strain, Soil Pressure, etc.

Type of Data

Measurement Type		Type of Data	Measurement Method	
Automatic		her Condition, Pavement rature, Pavement Moisture	Every 30 Minutes	
	Eigh.	Traffic Information	Continuous Collection	
	PCCP	Studio Call Ducasuus	Dynamic Load Test	
		Strain, Soil Pressure	FWD Impact Load Test	
Manual		Joint Mayamant Cyrling	72 Hours Observation	
Manual		Joint Movement, Curling	FWD Impact Load Test	
	ACP	Ctualin Call Ducas	Dynamic Load Test	
		Strain, Soil Pressure	FWD Impact Load Test	

Data Acquisition

- Automatic Measurement (15 Main Sections)
 - Install both Data Logger & Circuit Box at Each Section
 - Data Transfer to Main Server through Fiber-optic
 Cable Network
- Manual Measurement (58 All Sections)
 - Install only Circuit Box at Each Section
 - Data Collection through Vehicle Mounted Data Logger(Data Acquisition System)
 - Manual Data Transfer

System Layout

PLAN OF RESEARCH

 $2002 \approx 2004$

- To Set Up Research Infrastructure
- To Establish Test Road Operation Plan

 $2004 \approx 2010$

- To Develop Korean Pavement Design Guide
- To Use the Data for Other Pavement Research Projects

DEVELOPMENT OF MATERIALS AND DESIGN-CONSTRUCTION TECHNOLOGIES FOR THE SUSTAINABLE AND MULTI-FUNCTIONAL PAVEMENT

Contents

- **✓ OUTLINE**
- **✓ BACKGROUND**
- ✓ OBJECTIVES
- **✓ SUBJECTS**
- **✓ SCHEDULE**

OUTLINE

OUTLINE

Period

August 2006 ~ August 2011 (5 years)

Budget

Total	US\$	17.9 mil.
Government Fund		10.9
Matching Fund		7.0

OBJECTIVES

Realization of the Sustainable and Multi-functional Pavement

Four Key Objectives

User-Oriented
Multi-functional
Pavement System

Durable new
Pavement Materials
And Application
Technologies

Advanced Construction
Technologies Using
Non-destructive and
IT Technologies

Advanced
Pavement Maintenance
Technologies

SUBJECTS

DEVELOPMENT OF MATERIALS AND DESIGN-CONSTRUCTION TECHNOLOGIES FOR THE SUSTAINABLE AND MULTI-FUNCTIONAL PAVEMENT

DEVELOPMENT OF SUSTAINABLE AND MULTI-FUNCTIONAL PAVEMENT SYSTEM

- Water-reserved Pavement to Mitigate Heat Island Effect
- ☐ Colored Pavement and Durable Block
 Pavement
- ☐ Surface Treatment Methods for Low Noise Pavement
- ☐ Durable Asphalt Pavement System and Bridge-deck Pavement System
- ☐ Snow Melting System Utilizing
 Alternative Energy
- ☐ Embedded Bridge Joint System

DEVELOPMENT OF ADVANCED CONSTRUCTION AND MAINTENANCE TECHNOLOGIES FOR PAVEMENT

- ☐ Quality Control Technologies Using Nondestructive and IT Technologies for Pavement Construction
- □ Advanced Quality Control System for Asphalt Concrete Mixture
- ☐ Quick Repair Technologies for Concrete Pavement
- Mid-Temperature Asphalt Pavement for Overlay
- ☐ Decision Making Aid System for Local Roads

SCHEDULE

Contents

I. OUTLINE

II. Background

III. RESEARCH & APPLICATION

OUTLINE

- Research Period
- Budget
- Organization

OUTLINE

- Research Period : 2007~2016 (10 years)
- Budget : US\$ 150mil. + Construction cost
- Organization

Background

- Speed Change
- Evoluation of Information Technology
- Automobile Technology
- Prospect of Future Technologies

Speed Change

Evolution of Information Technology

in Space and Time

Automobile Technology

Past

Driving Capability

Performance Improvement **Present**

Passive Safety Air Bag, ABS, etc.

> Driver Protection

Future

Adaptive Safety
Danger Warning
Collision and
Accident Avoidance

Needs to build safer highway

Space

2005

Energy & Environment

Information Tech

E-Commerce

2005

Transplication tation

- Concept
- Objectives
- Structure of Project
- Schedule

SMART Highway

Highway of New Concept

where road, Information and vehicle technologies are integrated

- Safety
- Sustainability
- for Tomorrow

COOP Values S.M.A.R.T **M** obility

A dvanced

R eliablity

Objectives

Improve the quality of life through revolution of highway

Establishment of intelligent highway with design speed of 160km/h

Improvement of Safety

- Intelligent road facilities
- Geometric design for superhigh speed
- Application of intelligent vehicle technologies

Improvement of Mobility

- Congestion free traffic
- Improvement in travel speed more than 30%
- Road-vehicle communication

Improvement of Convenience

- Application of human factor to road
- Gentrifying highway facilities for the disadvantages
- Diversification of information services

Structure of Project

Blanket Subject

Establishment of Comprehensive strategy for Smart Highway

Core Subject 1

Core Technologies of Highway Infrastructure Core Subject 2

Road Communication Based Traffic Management Technologies Core Subject 8

Vehicle-infrastructure integration Technologies

Core Subject 4

Design and Construction of Test Bed and Monitoring

stage 1

2007 ~ 2008

Planning and Contracting

Stage 2

2009 ~ 2012

Research and Development stage 8

2013 ~ 2015

Application of Research Products to the Test Bed

2016~

Evaluation and Feed back

CONCLUSIONS

Safety and Sustainability are key issues

- The policy of the Korean government : willing to invest for future highways
- Chances for foreign experts to take a part in SMART Highway Project