Reducing Speed Limits to Support Lower Skid Resistance Investigatory Levels

Fergus Tate - National Traffic and Safety Manager NZTA

Presentation Outline:

- Background
- Research questions
- Requirements of analysis framework
- Key steps in analysis framework
- Case study
- Concluding remarks

Background (1):

- NZ Transport Agency instigated research project
- NZTA Project Manager, Fergus Tate
- Research Team, Peter Cenek and Robert Henderson, Opus

Background (2)

- ~40% of open road injury crashes involve loss of control on a bend
- Strong dependency between curve context and crashes
- T10 specification assigns SCRIM skid resistance investigatory levels on rural curves on the basis of crash-risk

Site	Skid site description	Investigatory level (IL), units ESC						
category		0.35	0.40	0.45	0.50	0.55	0.60	
1	Approaches to:							
	a) Railway level crossings							
	b) Traffic <u>sig</u> nals							
	c) Pedestrian crossings							
	d) Stop and Give Way controlled							
	intersections (where state highway traffic is required to stop or give way)							
	e) Roundabouts.							
	One lane bridges:							
	a) Approaches and bridge deck.							
2	a) Urban curves <250m radius							
	b) Rural curves <250m radius			L	Μ	H		
	c) Rural curves 250-400m radius		. L.	L.	М	H		
	a) Down gradients >10%.							
	b) On ramps with ramp metering.							
3	 a) State highway approach to a local road junction. 							
	b) Down gradients 5-10%							
	 Motorway junction area including on/off Ramps 							
	d) Roundabouts, circular section only.							
4	Undivided carriageways (event-free).							
5	Divided carriageways (event-free).							

Background (3):

- Financial and resource constraints
 - not always possible to provide high quality aggregates
- There are strong relationships between crashes on curves and
 - a. Wet surface friction (SCRIM)
 - b. Vehicle speed
- In response, could look to lower speeds at specific curves or potentially along a route to allow use of local aggregate sources.

Research questions:

- 1. If lower SCRIM skid resistance investigatory values are to be adopted what reduction in speed would be needed to achieve the same curve crash risk?
- 2. What would be the impact of these lower speeds on road users?

Requirements of analysis framework (1):

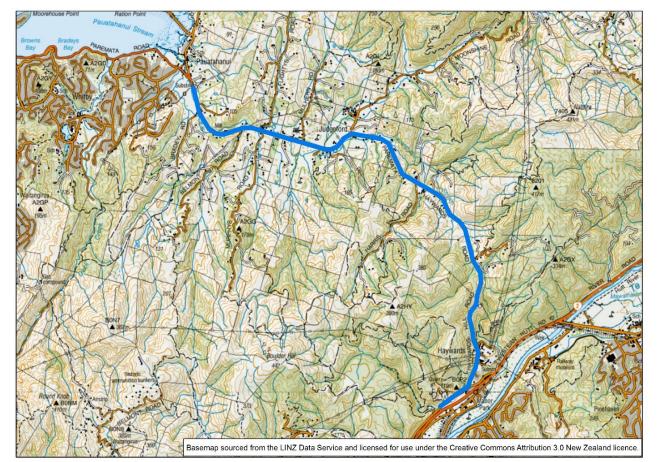
- All required inputs must be available from existing SH data sources e.g. RAMM.
- Utilise relationships derived from NZ research for:
 - skid resistance of the road surface and curve crash risk
 - horizontal radius of curvature and expected service life of the road surface
 - posted speed limits and mean and 85th %ile speeds

Requirements of analysis framework (2):

- Where possible, procedures provided in the Transport Agency's Economic Evaluation Manual for calculating the costs of benefits and disbenefits must be incorporated.
- Able to be delivered in the form of a spreadsheetbased tool.

Key steps in analysis framework (1):

- Determine the curve crash risk associated with the current T10 skid resistance investigatory levels using 85th %ile speeds for curves/route of interest.
- 2. Analyse the impact of reduced 85th %ile speeds in increments of 5 km/h on curve crash risk assuming an investigatory skid resistance value of 0.4 ESC, this being the average skid resistance level achieved on SH's when local aggregates are used.


Key steps in analysis framework (2):

- 3. Determine reduced route mean speed/speed limit that achieves T10 levels of curve crash risk but with a reduced skid resistance of 0.4 ESC.
- 4. Determine associated impacts of the reduced traffic speed on:
 - Travel time
 - Vehicle operating costs
 - Crash cost savings
 - Life of surfacing
 - CO₂ emissions

Case study (1):

- Open speed limit (100km/h) section of SH58.
- 10 km length containing 28 high risk curves (horizontal radius of curvature ≤ 400m)
- 19 of these high risk curves managed to IL ≥0.5 ESC
- AADT = 13766
- Existing average annual crash density is
 - 0.72 all injury crashes per km
 - 0.34 wet road injury crashes per km

Case study (2):

Example of a SH58 curve that is being managed to a skid resistance investigatory level of 0.55 ESC

(RS 3.69 km to 3.76 km)

Case Study (3):

Identifying new speed limit on basis of predicted collective curve crash risk

	Predicted Collective Curve Crash Risk (annual all injury crashes per curve)											
Statistic	Target (IL met)	Maximum 85 percentile speed (skid resistance = 0.4 ESC)										
		100 km/h	95 km/h	90 km/h	85 km/h	80 km/h	75 km/h	70 km/h	65 km/h	60 km/h	55 km/h	50 km/h
Max	0.46	0.50	0.47	0.45	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
Mean	0.24	0.28	0.25	0.23	0.22	0.21	0.20	0.20	0.20	0.20	0.20	0.20
Median	0.22	0.26	0.22	0.20	0.20	0.20	0.20	0.19	0.19	0.19	0.19	0.19
Total No.	6.79	7.91	6.98	6.40	6.03	5.79	5.68	5.59	5.53	5.48	5.45	5.43

Actual annual all injury crash number over period 2011-2016 = 7.2

Case Study (4):

Increase in Travel Time:

- Reducing the open road speed limit from 100 km/h to 90 km/h over the 9.946 km route was shown to increase the travel time by 0.66 minutes in the increasing direction and 0.67 minutes in the decreasing direction.
- The cost associated with these increases in travel time was calculated to be \$1,930,569.60 assuming an AADT of 14,254 vehicles per day and a composite value of travel time (all occupants and vehicle types combined) of \$33.48c/hr (July 2015).

Case Study (5):

Comparison of Benefits/Disbenefits

Component	Calculated Annual Cost (\$)					
Disbenefit:						
Travel Time	\$1,930,569.60					
Benefit						
Curve Crashes	\$228,150.00					
Severity of Crashes	\$118,609.00					
Base VOC	\$198,856.35					
Speed Change Cycle	\$3,264,682.09					
CO ₂ Emissions	\$7,954.25					
Extended Seal Life	\$506.12					
Subtotal:	\$3,818,757.81					
Benefit-Disbenefit:	\$1,888,188.21					

Concluding Remarks

- Reducing the open road speed limit has been shown to be a very effective safety measure if the skid resistance of high risk curves cannot be maintained at or above their recommended investigatory level.
- However, there is a valid concern when lowering speed limits that, while the mean and 85th percentile speeds appropriately lower, the variability in speeds increase and the upper 15th percentile speeds remain high.

