SaferRoads 5th International Conference Auckland 21-24 May 2017

Assessment of different road markings performance under different operating conditions and surfacing types

Assessment of different road markings performance under different operating conditions and surfacing types

Overview of the presentation

- 1. Introduction and Background
- 2. Mobile Reflectometer
- Identification of route sections
- 4. Variables tested
- 5. Results and observations
- Recommendations

Introduction and background

- Different standards for minimum acceptable retro reflectivity threshold
- Lack of consistency in retro reflectivity degradation models
- Variability in predicted life spans of different markings
- Need to know the expected initial retro reflectivity value for all paint types
- Compare performance vs non performance based contracts
- Need to understand performance of the different types of line markings on different surfacing and conditions
- Need to understand what factors contribute significantly to performance of the different line markings under different operating conditions

Mobile reflectometer

- Delta LTL-M machine used
- Past research show uncertainty of 7-15% error
- Measurements done every 50cm
- Calibration done with handheld reflectometer

Mobile reflectometer

- "R_L left or R_L Right" show the retro reflection of the full with of a marking, i.e. provide the retro reflection as the driver will see it.
- "R_L Centre left or R_L Centre right" gives the retro reflection of the centre 5 cm of a marking

Note: From the results of the two set of measurement data, if the the marking measured has been a worn one, we typically see the R_L Centre left/right constantly significantly higher compared to the R_L left/right.

Variables for the research

- Type of paint (including supplier)
- Line marking age
- Quantity of glass beads
- Quality of glass beads
- Traffic
- Surface type
- Geographical location
- Marking thickness/paint application
- Cross section ie Surfaced/no shoulder/dual carriageway

The Road Network and research sections

- Continuous yellow edge lines and centre line tested
- Minimum of 25 km and maximum of 100km length of section tested

Period	R _L specified white lines	R _L specified yellow lines
1-2 months	250	160
12 months	150	100
24 months	120	80

- Varying thermoplastic paint under same environment and traffic (RS3)
- Dual carriageway
- Traffic < 3000 ADT</p>
- Surface type: Asphalt
- Coastal section
- Age of markings: 16 months
- N2-10 km 73 to km 80 SUPPLIER A TP20-RETRO @ 1,2mm sprayed

(0,34 kg/m² glass beads)

N2-11 km 0 to km 8 SUPPLIER A TP30-RETRO @ 1,2mm sprayed (0,34 kg/m² glass beads)

Varying Thermoplastic quantity

16 months min R_L = 100

- ► Varying thermoplastic paint under same environment and traffic (RS4)
- Dual carriageway
- Traffic < 3000ADT</p>
- Surface type: Seal
- Coastal section
- Age of markings: 16 months
- SUPPLIER A TP20-RETRO @ 1,2mm sprayed (0,34 kg/m² glass beads)
 SUPPLIER A TP20-RETRO @ 1,6mm sprayed (0,34 kg/m² glass beads)

16 months min R_L = 100

Influence of surface type

SaferRoads2017
5th International Conference

Influence of Glass beads quantity (RS7)

- Age of markings: 17 months
- > <1000ADT
- Surface : Seal
- SUPPLIER A TP20-RETRO @ 1,2mm sprayed (0,34 kg/m² glass beads)
 SUPPLIER A TP20-RETRO @ 1,2mm sprayed (0,4 kg/m² glass beads)

SaferRoads

5th International Conference

- Varying glass beads application rates (RS15) under same environment and different surface type
- Surface type: Asphalt and Seal
- Traffic >1000ADT
- Age of lines 15 Months
- Supplier A TP20-HI-RETRO @ 1,2mm sprayed (0,4 kg/m² glass beads) Supplier A TP20-HI-RETRO @ 1,2mm sprayed (0,34 kg/m² glass beads)

16 months min R_L = 100

5th International Conference

► Influence of traffic, surface and environmental conditions (RS3 and RS7)

	RS3	RS7
Traffic	<3000ADT	<1000 ADT
Age of lines	16 months	17 months
Surface type	Asphalt	Seal
Geometry	Dual Carriageway	Single Carriageway

Supplier A Thermo 20% 1.2mm application and 0.34kg/m² glass beads

Influence of Traffic on the lines

SaferRoad

5th International Conference

16 and 17 months min R_L = 100

Influence of traffic on dual and single carriageway

Single carriageway centre line

Dual carriageway dividing line

- Varying paint type, supplier and application rates (RS6) under same environment and surface type
- Surface type: seal
- Traffic <1000ADT</p>
- No surfaced shoulder
- > Age of lines 5 months

Supplier A WBP-RETRO @ 0,63 l/m² (0,8 kg/m² glass beads)

Supplier A ASP-RETRO @ 0,42 l/m² (0,8 kg/m² glass beads)

Supplier C WB @ 0,63 l/m² (0,8 kg/m² glass beads)

SaferRoads

5th International Conference

- Varying paint type, supplier and application rates (RS10) under same environment and surface type
- Surface type: seal
- Traffic <1000ADT</p>
- No shoulder
- > Age of lines 18 months thermo and 9 months solvent
- R63/7 km 40 to km 90
- SUPPLIER A ASP-RETRO @ 0,5 l/m² (0,96 kg/m² glass beads)
 SUPPLIER C ASP @ 0,5 l/m² (0,96 kg/m² glass beads)
 SUPPLIER A TP30-RETRO @ 1,6mm sprayed (0,4 kg/m² glass beads)

SaferRoads

5th International Conference

Performance based vs specified type contract

- Comparing contract type, and application rates (RS12) under same environment and surface type
- Surface type: Seal
- Traffic <1000ADT</p>
- Age of lines 18 months performance and 12 months Water based
- > SUPPLIER B WBP @ 0,42 l/m² (0,8 kg/m² glass beads (high quality))

18 and 12 months $\min 100 R_L$

- Comparing contract type, line marking type including glass beads, with application rates (RS16) under same environment and surface type
- Surface type: Seal
- Traffic >1000ADT
- > Age of lines 15 months performance and 6 months solvent based
- SUPPLIER A ASP-RETRO @ 0,42 l/m² (0,8 kg/m² glass beads) SUPPLIER A ASP-HI-RETRO @ 0,42 l/m² (0,8 kg/m² glass beads)

- Comparing contract type, varying application rates (RS19) under same environment and surface type
- Surface type: Seal
- Traffic <1000ADT</p>
- Age of lines 6 Months Performance based and 8 months water based
- > SUPPLIER A WBP-RETRO @ 0,53 l/m² (0,96 kg/m² glass beads) SUPPLIER A WBP-RETRO @ 0,63 l/m² (0,8 kg/m² glass beads)

- Comparing contract type and varying line marking supplier(RS22) under same environment and surface type
- Surface type: Seal
- Traffic <1000ADT</p>
- Age of lines 7 months performance and solvent based
- SUPPLIER C ASP @ 0,42 l/m² (0,8 kg/m² glass beads) SUPPLIER B ASP @ 0,42 l/m² (0,8 kg/m² glass beads)

R58 sec 4

6 months min R_L = 160

- Varying line marking types from same supplier including glass beads, with application rates (RS13) under same environment and surface type
- Surface type: Seal
- Traffic >1000ADT
- Age of lines: 6 months solvent and water based
- > SUPPLIER B ASP-RETRO @ 0,42 l/m² (0,8 kg/m² glass beads) SUPPLIER B WBP @ 0,42 l/m² (0,8 kg/m² glass beads)

6 months min R_L = 160

6 months min R_L = 160

Photos

Conclusions

- Benefits of increasing quality and quantity of glass beads observed in all paint types
- ► Traffic and age of line influences retro reflectivity values
- Paint thickness and glass bead quantity influence the initial values of the lines
- Not much difference is observed in varying the paint and glass beads on thermoplastic in the initial months over same environment and surface type.
- ▶ Reflectivity values decrease more on seal surface than on asphalt surface
- Not much differences from the paint suppliers on the performance of both water based and solvent based paint type.
- Premiums paid over performance based contract need to be further looked at especially in terms of long term performance and the minimum initial threshold for reflectivity value

Recommendations

- Correlate texture measurements of different surfacing with the retro reflective measurements
- Investigate influence of line marking placement direction on the retro reflectivity
- Investigate the influence of environmental effect on pavement markings (time markings was painted and its performance period)
- Investigate the balance of increasing the glass beads and paint application rate for the 3 type of paints.
- Investigate retro reflectivity of different markings in wet conditions
- Investigate the influence of existing line marking type and condition on the adhesion of the new line marking and influence on the initial retro reflectivity
- Investigate the influence of type of surface, age of surface, environment and traffic on what performs better between solvent and water based paint for low traffic roads.
- More research on glass bead technology and their application
- Line markings degradation curves

Special Thanks

- ► SANRAL who funded the project
- Regional Manager Mr S.M Peterson
- SMEC SA (Port Elizabeth) Consulting Engineers on the project.
- Contractor Lanino Line Markings
- ► Technicians Sinanzo, Menzi and Onthathile

For more information:

Tsanwanil@nra.co.za

Thank you

