A Safe, Sustainable, Long Life, Low Noise Surface

Alabaster (NZTA) Forrest/Waters (Fulton Hogan) Herrington (Opus)

Outline

- Customer Focus
- . Background to EMOGPA
- Safety
- Sustainability
- . Noise
- · Where are we at?
- · What is in it for the Customer

The Customer Focus

- Our customers want safe, sustainable and quiet road surfaces.
- · Currently about 6.4% of the network is OGPA.
- · Will likely double the amount in next 5 years.
- · Around \$20/m²- \$30/m² to replace?
- The average life for OGPA is 7.2 years.
- Safe and Quiet but not Sustainable or Long Life

Why does OGPA fail?

Herrington, P.R., Reilly, S., Cook S. 2005. Porous Asphalt Durability Test. Transfund New Zealand Research Report 265.

- Most common form of distress is loss of chip from the surface (fretting and ravelling)
- Caused by embrittlement through reaction with atmospheric oxygen.
- Durability depends on
 - oxidation resistance of the binder
 - binder film thickness
 - aggregate grading
 - and percentage of air voids.

OECD Long Life Surfacings Study

Epoxy Modified Bitumen - the only existing product with the potential to extend surface lives.

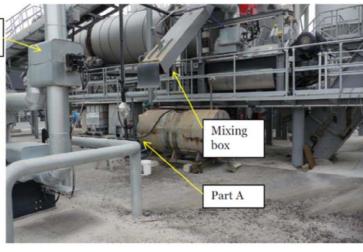
Properties-:

- Stiffer (higher modulus) at service temperatures, with greater load spreading ability
- More resistant to rutting, low temperature crack initiation, and surface abrasion from tyre action, even after oxidation
- More resistant to fatigue cracking (although the benefits are less marked at higher strain levels)
- · Less susceptible to water induced damage
- · More resistant to oxidative degradation.

Epoxy bitumen - where does it come from?

- · Developed by Shell in 1960s for airfields
- Main use is on very large difficult orthotropic steel bridge decks
- First application, on the San Francisco Mateo Bridge (California, United States), met performance requirements for over 40 years.
- Two part system:
 - Part A epoxy resin formed from epichlorhydrin and bisphenol.
 - Part B fatty acid curing agent in approximately 70 penetration grade bitumen

NZ Input to OECD Study


CAPTIF Test

Modifications to Asphalt Plant

Feed line

Pros and Cons of EMOGPA

Pros

- higher modulus with greater load spreading ability
- Resistant to rutting, and low temperature cracking
- · Resistant to fatigue cracking
- · Less susceptible to water induced damage
- · More resistant to oxidative degradation

Cons of EMOGPA

Cons

- · Risk of curing during processing
- Changes required to normal processing operations
- Cost
- Normal cost of OGPA is \$25/m^2
- EMOGPA cost is approx double

NZ implementation

- · Reducing costs by diluting the Epoxy Binder
- 25% EMOGPA lost all the rheological properties
- · But maintained bulk of the oxidation properties
- · Estimated life 40+ years
- · Costs of \$6/m2 extra for 25% epoxy bitumen
- · Break-even is 11 years.
- But room to improve as designs based on conventional OGPA thinking!.

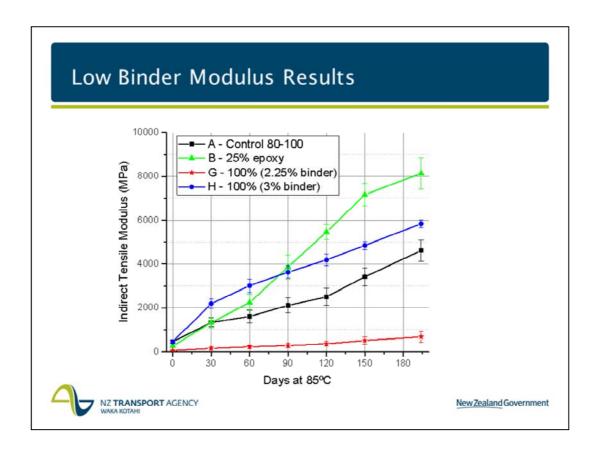
Safety Considerations

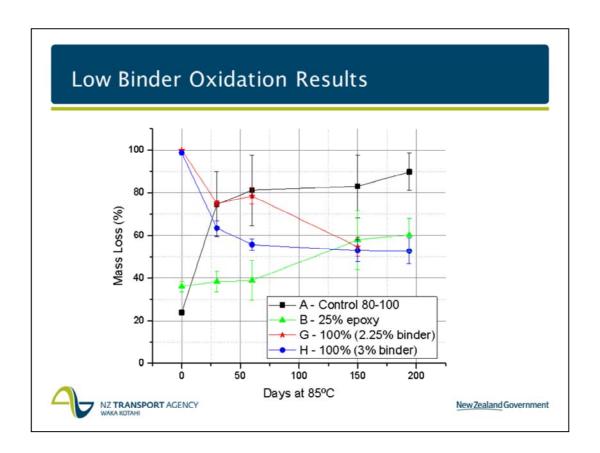
Concern that polishing over extended period would form a slippery surface

To combat this we only specify EMOGPA on low stress sites

- ie only in T/10 Site Cat 4 and 5. Straight roads with no events (0.40 and 0.35)
- Analysis has found that standard aggregates tend not to polish down below 0.40

Optimizing Sustainability


- · Looked at optimizing sustainability with
 - less binder and
 - less aggregate (ie more air voids).
- Cost wise 5.5% binder content, 25% epoxy bitumen mix
 (20% air void) = 100% epoxy bitumen with a 1.75% binder
- · Unfortunately, 1.75% mix is dry and friable by hand
- Satisfactory 20% air void mixes need 2.25% binder
- High air void (~30%), low binder content mixes showed the coating of the aggregate at 2.25% binder was better


Sustainability Options

Name	% Air void	Binder % Mass	Binder Type (% by wt)
Control	~20%	5.5%	100% 80-100 bitumen
25% epoxy	~20%	5.5%	25% Type V, 75% 80-100
100% epoxy	~30%	2.25%	100% Type V
100% ероху	~30%	3%	100% Type V

Manufacturing needs an extra small heated Tank (or an Intermediate Bulk Container (IBC)) with Part A feed into the Part B/local Bitumen that is in main AC plant tanks. Static inline mixing is working well. (ie a pipe with bends designed in it). Can be a temporary or permanent change in operation of AC plant.

Manufacturing needs an extra small heated Tank (or an Intermediate Bulk Container (IBC)) with Part A feed into the Part B/local Bitumen that is in main AC plant tanks. Static inline mixing is working well. (ie a pipe with bends designed in it). Can be a temporary or permanent change in operation of AC plant.

Sustainability Conclusions

To be practical rapid curing of the high void mixes needed. le

- · use of higher mixing temperatures
- · in-situ infrared heating or
- · changes to the epoxy binder formulation
- · use of curing accelerators

Where are we at?

- Contracts in Auckland, Hamilton, Wellington and Christchurch on "Roads of National Significance"
- Contracts with Fulton Hogan, Downers and Higgins
- Completed:
- Fulton Hogan SH16 Auckland (Lincoln Rd, Te Atatu and St Lukes), SH1 Wellington (N2AQ). SH1 Hamilton (Cambridge BP).
- Downers SH1 Christchurch, (Sawyers to Groynes and Memorial Ave).

Where are we going

- New IR QA test working well.
- Working with Environmental Team to optimise acoustics (of all OGPA).
 - · Smaller chip better than more voids
 - · Positive traffic control for a day after opening?
- · New Epoxy Binders being approved.
- Developing lower binder/ higher void solutions?
- · Working on Epoxy Binder Chipseals
- · Need check on old pavements before use

What's in it for the Customer

Customer Focussed, Collaborative and Curious work delivering a surface that is:

- Safe
- Sustainable
- · Low Noise
- · Long Life
- A future OGPA budget 1/6 of current level

For more information contact: David.Alabaster@nzta.govt.nz

