Using a 3D system for measuring pavement macro-texture

By Richard Wix Australian Road Research Board

> 5th International Safer Roads Conference Auckland, New Zealand 21 -24 May, 2017

Summary

- 3D technology
- Texture measurement
- Validation testing
- Observations
- Conclusions & future work

Typical uses of 3D technology Typical uses of 3D technology

Cracking and pavement distresses, rutting.

Other stuff that 3D technology can be used for

Other uses – pavement macro-texture

$$MTD = \frac{4V}{\pi D^2} \times 10^3$$

Automatic method MTD = air void volume measured divided by a fixed surface area (approximately 25x25 cm) (rather than round)

Known volume, versus know surface area.

3D texture versus ground truth

ARRB has been using 3D systems since 2012. Used a single vehicle, with a profiler on the front and the 3D system on the rear. Removes tracking issues.

Provide a brief description of validation sites, used for roughness, rutting and texture validation, 500m long, range of texture 1 to 3mm. Tested at 3 speeds – 40, 60 & 80 km/h

Historically.....

Validation trial

Important to mark out sites correctly

LCMS measurement method

Internal repeatability – typically good, with r-squared > 0.95, gradients close to 1 and small intercepts

Internal repeatability lowest

Small offset, most evident in outer wheel path over first 4 sites, different surface type

Some statistics – speed comparison

MTD		60 v 40 kmh		60 v 80 kmh			
	IWP	BWP	OWP	IWP	BWP	OWP	
r-squared	0.91	0.90	0.81	0.95	0.99	0.98	
slope	1.00	0.85	0.99	0.96	1.03	1.00	
intercept	0.04	0.39	0.13	0.02	-0.08	-0.01	

Not too shabby, 60 v 80 kmh the best

Ground-truth comparison

- Reference device: TM2
- Uses a 100mm wide line laser
- Reports MPD every 10m

 $MTD = 0.8 \times MPD + 0.2$

Follows same trends, highest correlation at 40 km/h

Some more statistics – 3D versus ground-truth

MTD	40 kmh		60 kmh			80 kmh			
	IWP	BWP	OWP	IWP	BWP	OWP	IWP	BWP	OWP
r-squared	0.85	0.94	0.93	0.72	0.85	0.77	0.72	0.85	0.71
slope	1.11	1.02	1.09	1.01	1.09	0.90	0.97	1.13	0.88
intercept	-0.27	-0.09	-0.13	-0.13	-0.30	0.09	-0.10	-0.40	0.12

Observations-1

- Good internal repeatability
- Measurements appear to be speed dependant
- Ground truth relationship dependant on accuracy of conversion equation

$$MTD = 0.8 \times MPD + 0.2$$

• Also difference in measurement methods

Variation in speed (possibly surface dependent)

Observations-2

- Driver tracking (increased lateral wander at low speeds)
- Compounded by variations in surface texture across lane

Insert picture of road surface

Conclusions & future work

- Looks promising
- Compare outputs against point laser systems
- Assess performance in accord with Austroads test methods
- Investigate other outputs
 - ravelling

Thank you for listening

For further information, please contact:

Richard Wix Chief Engineer, Systems Division Australian Road Research Board

P: +61 3 9881 1636

E: richard.wix@arrb.com.au

W: arrb.com.au

